skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Benson, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present cosmological dark matter (DM)–only zoom-in simulations of a Milky Way analog originating from enhanced linear matter power spectraP(k) relative to the standard cold, collisionless DM (CDM) cosmology. We consider a Gaussian power excess inP(k) followed by a cutoff in select cases; this behavior could arise from early-Universe physics that alters the primordial matter power spectrum or DM physics in the radiation-dominated epoch. We find that enhanced initial conditions (ICs) lead to qualitative differences in substructure relative to CDM. In particular, the subhalo mass function (SHMF) resulting from ICs with both an enhancement and a cutoff is amplified at high masses and suppressed at low masses, indicating that DM substructure is sensitive to features inP(k). Critically, the amplitude and shape of the SHMF enhancement depend on the wavenumber of theP(k) excess and the presence or absence of a cutoff on smaller scales. These alterations to the SHMF are mainly imprinted at infall rather than during tidal evolution. Additionally, subhalos are found systematically closer to the host center, and their concentrations are increased in scenarios withP(k) enhancement. Our work thus reveals effects that must be captured to enableP(k) reconstruction using DM substructure. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  2. Abstract For the first time, systematic studies of dwarf galaxies are being conducted throughout the Local Volume, including the dwarf satellites of the nearby giant elliptical galaxy Centaurus A (NGC 5128). Given Centaurus A's mass (roughly 10 times larger than that of the Milky Way), AGN activity, and recent major mergers, investigating the dwarf galaxies of Centaurus A and their star formation physics is imperative. However, simulating the faintest dwarfs around a galaxy of Centaurus A's mass with sufficient resolution in a hydrodynamic simulation is computationally expensive and currently infeasible. In this study, we seek to reproduce the properties of Centaurus A dwarfs using the semianalytic modelGalacticusto model dwarfs within a 700 kpc region around Centaurus A, corresponding approximately to its splashback radius. We investigate the effects of host halo mass and environment and predict observable properties of Centaurus A dwarfs using astrophysical prescriptions and parameters previously tuned to match properties of the Milky Way’s satellite galaxies. This approach allows us to approximately replicate cumulative luminosity functions, and luminosity–metallicity and luminosity–half-light-radii relations observed in the Centaurus A satellites. We provide predictions for the velocity dispersions, and star formation histories of Centaurus A dwarfs. The agreement between our predicted star formation histories for Centaurus A dwarfs and those of the Milky Way dwarfs implies the presence of universal processes governing star formation in dwarf galaxies. Overall, our findings shed light on the star formation physics of dwarf galaxies in the Centaurus A system, revealing insights into their properties and dependence on the host environment. 
    more » « less
  3. Abstract The properties of globular clusters (GCs) contain valuable information of their host galaxies and dark-matter halos. In the remarkable example of ultra-diffuse galaxy, NGC5846-UDG1, the GC population exhibits strong radial mass segregation, indicative of dynamical-friction-driven orbital decay, which opens the possibility of using imaging data alone to constrain the dark-matter content of the galaxy. To explore this possibility, we develop a semianalytical model of GC evolution, which starts from the initial mass, structural, and spatial distributions of the GC progenitors, and follows the effects of dynamical friction, tidal evolution, and two-body relaxation. Using Markov Chain Monte Carlo, we forward-model the GCs in a UDG1-like potential to match the observed GC statistics, and to constrain the profile of the host halo and the origin of the GCs. We find that, with the assumptions of zero mass segregation when the star clusters were born, UDG1 is relatively dark-matter-poor compared to what is expected from stellar-to-halo–mass relations, and its halo concentration is lower than the cosmological average, irrespective of having a cuspy or a cored profile. Its GC population has an initial spatial distribution more extended than the smooth stellar distribution. We discuss the results in the context of scaling laws of galaxy–halo connections, and warn against naively using the GC-abundance–halo–mass relation to infer the halo mass of ultra-diffuse galaxies. Our model is generally applicable to GC-rich dwarf galaxies, and is publicly available. 
    more » « less
  4. ABSTRACT We use the TNG50 from the IllustrisTNG suite of cosmological hydrodynamical simulation, complemented by a catalogue of tagged globular clusters, to investigate the properties and build up of two extended luminous components: the intra-cluster light (ICL) and the intra-cluster globular clusters (ICGCs). We select the 39 most massive groups and clusters in the box, spanning the range of virial masses $$5 \times 10^{12} \lt \rm M_{200}/\rm {\rm M}_{\odot } \lt 2 \times 10^{14}$$. We find good agreement between predictions from the simulations and current observational estimates of the fraction of mass in the ICL and its radial extension. The stellar mass of the ICL is only $$\sim 10~{{\ \rm per\ cent}}$$–20 per cent of the stellar mass in the central galaxy but encodes useful information on the assembly history of the group or cluster. About half the ICL in all our systems is brought in by galaxies in a narrow stellar mass range, M* = 1010–1011 M⊙. However, the contribution of low-mass galaxies (M* < 1010 M⊙) to the build up of the ICL varies broadly from system to system, $$\sim 5~{{\ \rm per\ cent}}-45~{{\ \rm per\ cent}}$$, a feature that might be recovered from the observable properties of the ICL at z = 0. At fixed virial mass, systems where the accretion of dwarf galaxies plays an important role have shallower metallicity profiles, less metal content, and a lower stellar mass in the ICL than systems where the main contributors are more massive galaxies. We show that intra-cluster GCs are also good tracers of this history, representing a valuable alternative when diffuse light is not detectable. 
    more » « less
  5. We study the fraction of the intra-cluster light (ICL) formed in-situ in the three most massive clusters of the TNG50 simulation, with virial masses 10 14 . We find that a significant fraction of ICL stars ( 8 % - 28 % ) are born in-situ. This amounts to a total stellar mass comparable to the central galaxy itself. Contrary to simple expectations, only a sub-dominant fraction of these in-situ ICL stars are born in the central regions and later re-distributed to more energetic orbits during mergers. Instead, many in-situ ICL stars form directly hundreds of kiloparsecs away from the central galaxy, in clouds condensing out of the circum-cluster medium. The simulations predict a present-date diffuse star formation rate of $$1 M /yr, with higher rates at higher redshifts. The diffuse star forming component of the ICL is filamentary in nature, extends for hundreds of kiloparsecs and traces the distribution of neutral gas in the cluster host halo. We discuss briefly how numerical details of the baryonic treatment in the simulation, in particular the density threshold for star formation and the equation of state, may play a role in this result. We conclude that a sensitivity of 1.6 × 10 19 2.6 × 10 18 erg s 1 cm 2 arcsec 2 in H α flux (beyond current observational capabilities) would be necessary to detect this diffuse star-forming component in galaxy clusters. 
    more » « less
  6. Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of M 50 = 10 8 M at the 1σlevel; however, a tail toward low M 50 prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on M 50 at the 1σlevel, but the 2σtail toward low M 50 persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics. 
    more » « less
  7. ABSTRACT In this study, we modify the semi-analytic model galacticus in order to accurately reproduce the observed properties of dwarf galaxies in the Milky Way. We find that reproducing observational determinations of the halo occupation fraction and mass–metallicity relation for dwarf galaxies requires us to include H2 cooling, an updated ultraviolet background radiation model, and to introduce a model for the metal content of the intergalactic medium. By fine-tuning various model parameters and incorporating empirical constraints, we have tailored the model to match the statistical properties of Milky Way dwarf galaxies, such as their luminosity function and size–mass relation. We have validated our modified semi-analytic framework by undertaking a comparative analysis of the resulting galaxy–halo connection. We predict a total of $$300 ^{+75} _{-99}$$ satellites with an absolute V-band magnitude (MV) less than 0 within 300 kpc from our Milky Way analogues. The fraction of subhaloes that host a galaxy at least this bright drops to 50 per cent by a halo peak mass of ∼8.9 × 107 M⊙, consistent with the occupation fraction inferred from the latest observations of Milky Way satellite population. 
    more » « less